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The Lunar Dust Problem
Dust mobilization 
methods:

• Interactions with surface 
electric fields

• Meteorite impacts

• Human activities
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Apollo 16 LRV traverse (Credit: NASA) 



The Lunar Dust Problem
• General problems

• Highly cohesive
• Retain charge in lunar vacuum
• Damaging to humans tissue

• ISRU specific problems (International Agency 
Working group, 2016, Gaier, 2007)
• Clogging mechanisms
• Damage to rotating bearings/motors/drills
• Seal failures
• Abrasion
• Compromising thermal control surfaces
• Degrading solar panels
• Contaminating extracted volatiles
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Image credit: David S. McKay/NASA/JSC



Dust Mitigation Techniques
1. Limit initial dust 

mobilization
• E.g. fenders/sintered 

roads/vehicle speed

2. Prevent dust 
collection
• E.g. 

filters/bellows/surface 
coatings

3. Dust removal
• E.g. brushes/electrostatic 

precipitators/pressurized 
gas

4. Dust tolerance
• E.g. ceramic bearings4

(Credit: Eugene A. Cernan/NASA)
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SPIDR
• A simulation that can be used to predict how dust is mobilized following 

interactions with planetary surfaces

• Questions we hope to answer:
• What are the effects of lunar surface properties, regolith properties, and rover/excavator 

design on the formation of dust clouds?
• How can we inform the design and operation of rovers/excavators to minimize dust 

mobilization and collection onto sensitive surfaces?

• Properties currently being considered in the development of the simulation:
• Lunar surface environment
• Grain size and bulk porosity
• Grain charge
• Cohesion and friction
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Lunar Surface Environment
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λD = ~1 m 
(Stubbs et al., 2006) 

Φs = +10 to +18 V  
(Freeman & Ibrahim, 1975)

λD = ~1000 m 
(Halekas, 2003) 

Φs = -100 V  
(Freeman & Ibrahim, 1975, 

Halekas et al., 2005)

λD = ~10 m 
(Freeman & Ibrahim, 1975, 

Stubbs et al., 2006) 

Φs = -45 to -100 V  
(Freeman & Ibrahim, 1975, 
Colwell et al., 2007, Orger 

et al., 2016)



Lunar Surface Environment
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Illustration of the charging environment at lunar shadowed craters (Credit: Farrell et al., 2010)



Grain Size, density, and Bulk Porosity
• Discrete grain sizes with weighted 

distributions

(Preliminary testing with single grain sizes)

• Density of lunar rock taken as 3365 kg m3, 
as averaged from Kiefer et al. (2012)

• Bulk porosity from upper 15 cm of lunar 
soils taken as 52 ± 2% (Carrier et al., 1991)
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Grain size, d 
(mm)

Ratio of total 
mass (wt %)

Ratio of total 
number of grains (%) 

0.469 38 0.0014
0.055 32 0.72
0.012 29 60

0.0001 0.00001 38

Average grain size distribution for lunar soils taken from Zeng et al. (2010). 



Grain Charge
• Dust grains will become 

triboelectrically charged in a 
vacuum

• Sickafoose et al. (2001) 
measured the surface potentials 
built up in JSC-1A grains (r=50 
µm) in vacuum

• Using 𝑞 = 4𝜋𝜀!𝑟"𝜙# with 
Sickafoose et al.’s results, we 
predict the charge for different 
grain sizes
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Surface potentials recorded for JSC-1A (Credit: Sickafoose et al., 2001) 



Cohesion and Friction
• Different cohesive 

mechanisms can be simplified 
into a DEM parameter, 
Cohesive Energy Density 
(CED).

• Bulk material flow behaviour is 
dependent on the coefficient 
of particle-on-particle friction, 
the coefficient of rolling 
friction, and CED. 

• Roessler & Katterfeld (2019) 
devised an experiment to 
calibrate these parameters.
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Comparison of the experiment and the best-fit DEM parameter 
combination (Credit: Roessler & Katterfeld, 2019)



Cohesion and Friction
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Initial simulation for lunar soils                       Experiment with LMS-1



Building a Simulation
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• LIGGGHTS (LAMMPS improved for general 
granular and granular heat transfer simulations)

• Create rover wheel
• Simplified Apollo 16 wheel & fender
• Can use any wheel design

• Defining Particles
• Size, charge, cohesive properties

• Running Simulation
• Insert particles into tray
• Lower wheel into particles
• Rotate wheel



Initial Testing
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Apollo 16 ‘Grand Prix’ (Credit: NASA)
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Initial Testing
0.1 µm radius                                       50 µm radius                                        combined
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Initial Testing



Next Steps

• Improve fidelity of simulation
• Update soil properties with data 

from Apollo soil samples
• Apply a particle size distribution

• Investigate effects of different 
lunar conditions
• How does electric field impact 

dust distribution?
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Illustration of the charging environment at lunar 
shadowed craters (Credit: Farrell et al., 2010)



Applications
• Upcoming Lunar Terrain Vehicle and other 

rover designs
• SPIDR can helps assess different wheel and fender 

designs, and provide inputs into the most suitable 
location of sensitive components such as solar 
panels/radiators.

• SPIDR can also estimate safe ‘speed limits’ that 
could keep dust mobilization down below a 
desired limit.

• ISRU Excavators
• SPIDR could be used to trial different excavation 

tools and modes to predict how much dust will be 
mobilized and identify the most suitable tool/mode 
to protect sensitive components.
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Artist's illustration of the Northrop Grumman-led 
Moon rover (Image credit: Northrop Grumman)

Lunar Outpost's MAPP Rover. (Credit: Lunar Outpost)



Summary
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• We have created a DEM 
simulation to analyze lunar dust 
interactions with rover wheels

• We are using an Apollo LRV 
wheel design and lunar surface 
footage to help calibrate the 
model

• Preliminary results show that 
particles of different sizes will be 
distributed unevenly

• Further developments of the 
model are planned, and we hope 
to apply it to wheel designs for 
upcoming missions
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